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ABSTRACT

Given a topological space (X,T) € M, an elementary submodel of set
theory, we define Xps to be X N M with the topology generated by
{UNM :U € TnM}. We prove that it is undecidable whether X s
homeomorphic to w; implies X = X, yet it is true in ZFC that if X,
is homeomorphic to the long line, then X = Xjs. The former result
generalizes to other cardinals of uncountable cofinality while the latter
generalizes to connected, locally compact, locally hereditarily Lindelof T
spaces.

0. Introduction

We take M to be an elementary submodel of Hy for 8 a sufficiently large regular
cardinal, but act as if Hy = V. For an extended discussion of this standard
circumlocution see [3] or [5] or [8].

Let (X, T) be a topological space which is a member of M. Let X3 be XNM
with topology T generated by {UNM : U € TN M}. In [8] the second author
proved that if Xps is homeomorphic to R, then X = Xj,. K. Kunen asked if
analogous results hold for ordinals. The first section of this paper, which forms
part of the University of Toronto Ph.D thesis of the first author [6], written under
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the supervision of the second author, shows that this is true for cardinals under
an additional hypothesis, but is undecidable in general, even for w;. This renders
the second section result — due to the second author — quite surprising, namely
that if X5, is homeomorphic to the long line, i.e., w; X R ordered lexicographically
and given the order topology, then X = X .

ACKNOWLEDGEMENT: We thank the referee for a number of useful comments.
We need the following result:

THEOREM 0.1: [2] Let (X, T) be a locally compact Tp space and let M be a
elementary submodel such that (X,7) € M. Then there is a Y C X and
m: (Y, T) — X such that w is perfect and onto.

The mapping is defined as follows: Let

Ve={VeTNM:zeV}, forxe Xy.
Km=ﬂV$, for x € Xy,

Note that, since X is Hausdorff, a simple elementary submodel argument shows
that if z,y € M and z # y, then K, N K, = 0.
Define

Y=U{Km:a:€XM},

and
Y, T) — (Xm, T,

by
m(y) = x if and only if y € K. ]

1. Upwards reflection of cardinal spaces

We first solve the easier question of what happens when Xy is actually equal to
an ordinal.

THEOREM 1.1: Let x be an ordinal, (X, T) a topological space and let M be an
elementary submodel such that X, T.x € M. If X3y = x then X = k.

Proof: Notice that as X = st
(1) ME(Vz,ye X)(r€yory€ux).
(2) M E (Vz € X) (z is an ordinal).
3) M E (Vze X) (Vy € z)(y € X).
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(4) M E(YAC X) (A has an € —minimal element).

All of the above imply that M | X is an ordinal, which implies that H(#) = X
is an ordinal. Notice that this fact holds in the set sense, i.e., we still have to
prove that it is also true in the topological sense. Also notice that we used
here that € is an absolute relation, so the same arguments would not hold for
“homeomorphic” instead of “equal”.

CLAM 1: For 7y, < 72 € & we have that M }= (v1,72] is open in X.

Proof: Otherwise we would have

(%) M E (3,72 < K)(3z € I = (y1,72] N int((71, 72)))-

Pick y1,v2, z € M satisfying the above sentence. We may say that x = v < &.
AsT e M,z el and Xp =&, Iis open in Xps. So there is a V € Ty such that
xeVNMCI. Therefore M =V is open, z € V and V C I. This contradicts
(*) and we have the result. ]

CLaM 2: M E (W eT)Vae X){aeV - (38 < a)((B,a] CV)).

Proof: Pick Ve TnNM. VNM € Ty. Using that Xpr = & topologically we
may find f < a such that (8,a] CV N M. As before, (8,a] € M and so we have
that M E (8,a] C V. |

Claim 1 and Claim 2 combined say that M = X is homeomorphic to an
ordinal, and consequently H(#) = X is homeomorphic to an ordinal. All we
need to prove now is that this ordinal is actually «.

Suppose not. Then X = XA > k. Since Kk C M and s« € M, we would have
XNM = ANnM, which includes k + 1. This would contradict X N M = &. |

We will now state and prove a version of the Theorem when we have “home-
omorphic” instead of “equal”. The “equal” version would follow from a positive
“homeomorphic” version, but for the latter, we only have consistency results and
even that not for all ordinals. As we do not have the topology on the space
defined by an absolute order, €, the proof technique is rather different.

First we need the following Lemmas; we give a hint of proof for those not yet
published.

LEMMA 1.2: Let & be a cardinal of cofinality > w;. Consider the topology
induced by the order and let Y C x be such that with the subspace topology, Y
is homeomorphic to k. Then Y is a closed subset of .



84 R. G. A. PRADO AND F. D. TALL Isr. J. Math.

Proof: Fix h: Y — k a homeomorphism and notice that since they are home-
omorphic,

(*) Y| = k.
Suppose that Y is not closed. Pick @ = min{6:60 € cl(Y)~Y}.

CrAaiM:
() R"(Y N[0, a]) is bounded in &.

To see that, suppose otherwise. Then C; = h”(Y N[0, @) is a closed unbounded
subset of . In this case Co = h”(Y [0, @) is a closed subset of £ which must be
bounded as cof(x) > w;, and for such s two closed unbounded sets must meet,
but C; and C> are obviously disjoint.

So for some B3, C; C [0, 8], which is compact, and consequently Y ~[0,a] C
h~1([0, B]) which is also compact. So Y \[0,a] C [0,7] C &, for some v < k.

Notice now that this implies Y = (Y N {0, ]) U (Y \[0,¢]) C [0, max(c, v)],
which implies Y| < &, contradicting (). |

Now, let A = cof(a). Fix f: A — « a cofinal mapping.
By induction, we will construct a strictly increasing sequence

o={a.:e<A}CY

converging to o ¢ Y with the following induction hypothesis:
(1) VB < A, {ac: € < B} is strictly increasing.
(2) If B < A is a limit ordinal, then ag = sup{a. : € < B}.
Choose o € (f(0),a]NY. I  is chosen, then

(% % %) Ot 18 chosen in (ae, ] N (f(e+1),a]NY.

It remains to choose ag for 8 < X a limit ordinal. Notice that o = {ac : € < B}
is not closed in k. If it were closed, as it is bounded, it would have an upper
bound in og, and this would contradict the fact that it is strictly increasing. It
has then a limit point and this limit point has to be in Y by the minimality of
a and since 8 < cof(a). We choose ag to be this limit point. By (x x ), ¢
converges to a.

Notice that by the way we constructed it, o U{a} is closed in . So ¢ is closed
inY.

We have that h” (o) is closed in & and is bounded in & by (). It is then a
compact subset of 5. As h is a homeomorphism, ¢ is compact in Y. As Y is
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a subspace of , it is compact in k. This is a contradiction since it includes a
sequence converging to a point outside of it. |

LeEMMA 1.3 (see [1]): Suppose that M is an elementary submodel and X is a
topological space such that (X, T) € M. If Xjr is compact then X is compact
and Xz is a perfect image of X.

This and the following lemma are not hard to prove, using elementarity and
the perfect map defined after the statement of Theorem 0.1.

LEMMA 1.4 (see [8]): Suppose that M is an elementary submodel and X is a
topological space such that (X, T) € M. If Xy is locally compact T, then X is
also.

LEMMA 1.5 (see [5]): Suppose that M is an elementary submodel, XY € M
andY C M. If | X| < |Y]| then X C M.

This is straightforward, taking the function witnessing |X| < |Y] to be in M.
Let x{x, X) be the least cardinal of a neighborhood base at x.

LEMMA 1.6: [2] If M is an elementary submodel, Kk C M, and (X,T) € M is a
topological space such that for every © € X, x(x,X) < &, then X is a subspace
of X.

THEOREM 1.7: Let M be an elementary submodel, (X,T) a topological space
and k a cardinal with cof(k) > wy and such that k, X, T € M and also K C M.
If X s is homeomorphic to , then X = X and hence is homeomorphic to k.

Proof: As X is homeomorphic to x, it is locally compact T5. So by Lemma 1.4,
X is locally compact T and we can use Theorem 0.1 to get a surjective perfect
mapm: Z C X — Xu. Fix f: 6 — Xr a homeomorphism and call z, = f(a).
Then
Va< k) FVy e TONM)(zq € Vo N M C f'([z0,z4)))-

Notice that
(%) Vo N M| < &.
CraM 1: V E |V, < &.

Otherwise M k= |V, | > & which implies M | (3B C V,)(|B| = &).
Pick such a B € M. Since &« C M, by Lemma 1.5 we get that B C M. So
B C V, N M has size «, which contradicts (*). [ |
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Cram 2: VE(Vze X)AV e T)(z eV and |V| < k).

It is enough to prove that M models the previous sentence.
Suppose otherwise, that

() ME@@ze X)(WeT)(ze V)= (V] > k).

Pick such an £ € X N M. There is some a such that £ = z, and so the
previously defined V,, contradicts (xx). |

Now, V = Every point in X has a neighborhood of size < . Since X is locally
compact T3, we get that each point in X has a neighborhood base of size < k.
Since k C M, it follows that Xy = X N M has the subspace topology inherited
from X (by Lemma 1.6).

CramM 3: XN M isopenin X.

To see that, for £ € X N M, use Claim 2 and get V a neighborhood of z of size
A < k. This V may be taken in M (as z € M) and so by Lemma 1.5 we have
that VC M. Now,z e VC X NM. |

We will prove now that |X| < k. Suppose otherwise that
(% * %) VEIXNXNM| >k
We obtain V |= (3open Y C X)(Y =k and | X NY]| > k). So
VEBopen Y C X)Y &g and (3T C XNY)(|T| =&).
By elementarity
ME@open Y CX)Y 2k and (3T C X NY)(|T| = &).

Pick Y,T € M. Again, by Lemma 1.5, T C X NMand Y C X NM. In
particular YV is open in X N M.

Remember that X N M = X, which is homeomorphic to x. So fix g: kK —
X N M a homeomorphism.

C = g71(Y) is a subset of k homeomorphic to «. So it is closed in s by
Lemma 1.2. As Y is open, C is also open in k. So D = £~ C is a closed subset
of x. Because two clubs in « always meet (as cof(k) > wy), D is a bounded set
in k¥ having then cardinality less than «. The contradiction comes from the fact
that g~}(T) C D and has size 5. So (* x ) is false which implies |X| = &, and
by Lemma 1.5, X C M, so X = X N M and hence is homeomorphic to «. L |
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We do not know if our results can be extended to singular cardinals of countable
cofinality, or to arbitrary ordinals of uncountable cofinality.

The assumption that kK C M is a strong one; however the following two the-
orems will show that the condition that the cardinal be included in the model
cannot be eliminated from the hypothesis of Theorem 1.7, at least when & is not
weakly inaccessible.

THEOREM 1.8: Suppose that M is an elementary submodel, « is a cardinal and
(X, T) is a topological space such that X, T,x,k* € M ands C M but s+ ¢ M.
If X3 is homeomorphic to k* then X is not homeomorphic to k+.

Proof: We have two cases. If for some z € X, x(r,X) > s*, then trivially X
is not homeomorphic to k. Suppose then that for every z € X, x(z, X) < k.
Then by Lemma 1.6, Xz is a subspace of X.

If X is homeomorphic to ¥, fix f: s — X = {z4 : @ < £} a homeomor-
phism. We may pick f € M. Notice that Y = f~1(X N M) is a subset of x*
homeomorphic to k. By Lemma 1.2, Y is closed in k1, which implies X N M is
closed in X.

As kT € M, X is not a subset of M (again just use that f € M). Pick now
v = min{a : 2, ¢ X N M}. Since f € M, we have that v is an infinite limit
ordinal. Now 0 = {zq : @« <7} C X NM and z, € cl(o) as vy € cl({a: a < v}
and f is a homeomorphism. Since X N M is closed in X, z, € X N M, which
contradicts the definition of . |

THEOREM 1.9: Suppose that M is an elementary submodel, k is a cardinal with
wy < cof(k) =7 < wand (X, T) is a topological space such that X, T,x € M and
TC M but i € M. If Xpr is homeomorphic to & then X is not homeomorphic
to K.

Proof: Again, we have two cases. Let w(X) be the least cardinal of a base for
X. fw(X) <k orw(X) > & then clearly X is not homeomorphic to x. We may
suppose then that w(X) = k. Pick B= {Bg: 8 < k} € M a basis for X of size
k. Fix f: 7 — & a strictly increasing cofinal map and define for z € X N M:

Va <7, Cpa=[{Bs:8< fla)and z € Bg}.
Notice that as all parameters are in M, also Cy o € M. Define

P, ={Crn:a<7}
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Notice that:
(1) P,e M.
(2) P, C M (since 1 C M).
(3) N Pz = {z}, since if y # x then there is Bg such that y ¢ Bg but « € Bg.
We are using that X is T1; this is by elementarity, since Xas is T3 because
K is. Pick a € T such that f(a) > 8 and notice that y ¢ Cy 4.
To finish the proof observe that, defining V, and = as in 0.1,

(Ve )P = {=}.

So, as an injective perfect map, 7 is a homeomorphism, and the proof proceeds
as in Theorem 1.8. L

LEMMA 1.10: [5] If 0% does not exist and [M| > &, then Kk C M.

This is proved by considering the inverse i~! of the Mostowski collapsing
isomorphism ¢ of M. i’llL,.i moves some a < & if M 2 «.
Theorem 1.7 together with the previous lemma leads to the result:

COROLLARY 1.11: Suppose 0% does not exist. Let M be an elementary sub-
model, (X, T) a topological space and & a cardinal with cof(k) > w; such that
k,X,T € M. Then if X is homeomorphic to k, then X is homeomorphic to .

The reader may obtain information about 0% in [4]. It is a special subset of w.
Its existence has many consequences, among them the existence of large cardinals
in inner models. Also, V = L — 0% does not exist.

Any definable k such as w;, wa, etc. is automatically in M. Also, the condition
that £ € M is sometimes a consequence of £ C M. This holds, for instance, for
all successor cardinals:

PROPOSITION 1.12: Suppose that & = Rz and § < k. If M is an elementary
submodel and k C M then k € M.

Proof: The proof is simple. We have that x = Rg and 8 € M so Ng is defined
inM,soxk e M. ]

We now present some examples. Let ot{X) be the order type of X.
LEMMA 1.13: Let M be an elementary submodel and k € M a cardinal with the

order topology T. Then kpr is homeomorphic to ot{x N M).

Proof: To see this, B = {[a, 8], [a, 8) : @ < 8 < &} is a basis for the topology of
% that lies in M. Therefore Tyr and By = {BNM : B € BN M} generate the
same topology on kps.
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Now [a, 8) € M if and only if «, 8 € M, and similarly for [e, A].
So if f: ot(kN M) — kN M is strictly increasing and onto, it is a homeomor-
phism between ot(k N M) and K. 1

Example 1.14: An elementary submodel M, and a topological space (X, 7T) € M
such that X is not homeomorphic to w but X is homeomorphic to w.

Just pick X a discrete space of uncountable cardinality and M a countable
elementary submodel such that X € M. In this case Xys is a countable discrete
space and thus homeomorphic to w. |

Notice that in the above example, w € M,w C M but cof(w) = w < w1.

If we are looking for an X such that Xjs is homeomorphic to wy but X # Xu,
by Theorem 1.7 we need to find an M with w3y € M. Such an M must have
Jwy N M| countable and yet be uncountable since Xy is uncountable. We thus
assume Chang’s Conjecture in the following form:

There is an elementary submodel M such that M| = ¥, w1 N M| =Ry and
|w2 N M| = N1.

Example 1.15: Assuming Chang’s Conjecture, there is an elementary submodel
M, and a topological space (X, 7T) € M such that X is not homeomorphic to w;
but X is homeomorphic to w;.

Observe that
(x) wy =min{r € M : [N M| =8}

To see this, pick 7 < wg € M. Then there is f € M, a bijection between w;
and 7. Because f € M, we have that |t N M| = |w; N M]|.

CraM: The order type of wo N M is wy.

To see this suppose otherwise, that thereisa 8 >w;andag: 8 — weNM
strictly increasing and onto. Now f(w;) < we would contradict (*).

Let X = w; with the order topology. By Lemma 1.13, X s is homeomorphic
to wy. |

Chang’s Conjecture has medium large cardinal strength — its consistency can
be obtained from an w;-Erdés cardinal o, i.e., @ = (w1)<* [T].
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2. The long line
THEOREM 2.1: If X is homeomorphic to the long line, then X = X ;.

Proof: Xz is locally compact T3, so X is also by Lemma 1.4. It is easy to see
that X is connected since Xz is. Since X is connected and Tychonoff, there is
a continuous f mapping X onto [0,1]. Hence there is a continuous g mapping
X onto [0,1]4 = [0,1)N M by Lemma 1.6. But then [0,1]N M is connected, it
includes the rationals, so it is all of [0, 1].

We may therefore conclude by Lemma 1.5 that w; C M.

In [8] it is shown that w; C M implies hereditary Lindelofness goes up from
X to X; the same proof will work for local hereditary Lindel6fness:

LeMMA 2.2: If wy C M and Xy is locally hereditarily Lindeldf, so is X.

Proof: Suppose X is not locally hereditarily Lindelof. Then
ME@re X)W eTzelU— 3f:wr — U)FH{Us}acw, € T)Va < wy)
(f(e) € U and (VB < o)(f() ¢ Us))]-

Since w; € M, we have

Gre XNM)YWU e TAM)[z € UNM = (3f € M)(f: w1 — UN M)
(HUatacw € TNM)(Va < wi)(f(a) € UsNM and (VB < a)(f(a) ¢ UgNM))),

which implies X s is not locally hereditarily Lindelof. |
It follows that

LEMMA 2.3: X is first countable and hence X is a subspace of X.

Proof: The second half follows from the first and Lemma 1.6; the first half
follows from local compactness plus local hereditary Lindelofness. "

Now we can finish the proof of Theorem 2.1.

Define by induction {Ky}a<w,: Ko is any compact neighborhood in X; for o
limit, Ko = |U{Kp}p<a; for @ = f+ 1, take a compact neighborhood N, about
each z in K and let K, = | J{N, : ¢ € Kg}.

Let K = g0,
Therefore K = X by connectedness. By induction, each K, — and hence X
— has cardinality < 2%, since compact first countable Hausdorff spaces have

K,; K is open by construction and closed by first countability.

cardinality < 2%, and the closure in a first countable Hausdorff space of a set
of size < 2%0 also has size < 2%, But then X € M by Lemma 1.5. X7 is a
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subspace of X, so the topology of Xjs coincides with that of X N M, i.e., X, so
we are done.

We have used very little of the properties of the long line; what we have in fact
proved is:

THEOREM 2.4: If X is a connected, locally compact, locally hereditarily
Lindelof Ty space, then X = X .

Theorem 2.4 should be compared with the following result, which is Theorem
17 of [8]:

THEOREM 2.5: If X is a locally compact, hereditarily Lindelof uncountable T
space, then X = X

“Connected” cannot be replaced by “locally connected” in Theorem 2.1: Let
X be the disjoint sum of (2%)* copies of R, and let M be a countably closed
elementary submodel of size 2%. Then X, is the sum of 2% copies of R.

The local hereditary Lindelofness also cannot be omitted. Consider a “longer
line”, obtained by ordering X = (2%)* x R lexicographically. Take a countably
closed elementary submodel M of size 2%. Then X, is an initial segment of X
and so is locally compact T3 and connected.
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