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ABSTRACT 

Given a topological space (X, T) E M, an elementary submodel  of set 

theory, we def i le  X M  to be X n M with the topology generated by 
{ U N M  : U E T A M } .  We prove tha t  it is undecidable whether  X M  

homeomorphic  to wl implies X = X M,  yet it is t rue in ZFC tha t  if X M  
is homeomorphic  to the  long line, then  X ~- XM.  The former result 
generalizes to other  cardinals of uncountable cofinality while the  lat ter  

generalizes to connected,  locally compact ,  locally hereditarily LindelSf T2 

spaces. 

0. I n t r o d u c t i o n  

We take M to be an elementary submodel of H6 for t9 a sufficiently large regular 

cardinal, but act as if He = V. For an extended discussion of this standard 

circumlocution see [3] or [5] or [8]. 

Let (X, T)  be a topological space which is a member of M. Let XM be X n M 

with topology TM generated by {U n M :  U G T N  M}. In [8] the second author 

proved that if XM is homeomorphic to R, then X = XM. K. Kunen asked if 

analogous results hold for ordinals. The first section of this paper, which forms 

part of the University of Toronto Ph.D thesis of the first author [6], written under 
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the supervision of the second author, shows that this is true for cardinals under 

an additional hypothesis, but is undecidable in general, even for Wl. This renders 

the second section result - -  due to the second author - -  quite surprising, namely 

that  if X M  is homeomorphic to the long line, i.e., Wl x R ordered lexicographicMly 

and given the order topology, then X -- X M.  

ACKNOWLEDGEMENT: We thank the referee for a number of useful comments. 

We need the following result: 

THEOREM 0.1: [2] Let  (X ,  7") be a locally compact  T2 space and let M be a 

elementary submodel  such that (X, 7-) E M .  Then  there is a Y c X and 

~r: (Y, 7") > X M  such that  7r is perfect and onto. 

The mapping is defined as follows: Let 

l;~ = {V E T N M : x E V}, for x E X M. 

K~ = N 1;~, for x E X M. 

Note that,  since X is Hausdorff, a simple elementary submodel argument shows 

that if x ,y  E M and x # y, then K~ NKy = 0. 

Define 

Y = U { K x : x C X M } ,  

and 

by 

~: (Y, 7~ --~ (XM, TM), 

7r(y) = x if and only if y E Kz. II 

1. Upwards  ref lect ion o f  cardinal  spaces  

We first solve the easier question of what happens when X M is actually equal to 

an ordinal. 

THEOREM 1.1 : Let  n be an ordinal, (X, T) a topological space and let M be an 

elementary  submodel  such that X ,  T ,  h" E M.  I f  X M  = h: then X = h:. 

Proof: Notice that a s  X M = n: 

(1) M ~ ( V x ,  y E X )  ( x E y o r y E x ) .  

(2) M ~ (Vx E X) (x is all ordinal). 

(3) M ~ (Vx E X) (Vy E x)(y E X). 
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(4) M ~ (VA C_ X) (A has an E -minimal  element). 

All of the above imply that M ~ X is an ordinal, which implies that H(O) ~ X 

is an ordinal. Notice that this fact holds in the set sense, i.e., we still have to 

prove that it is also true in the topological sense. Also notice that we used 

here that E is an absolute relation, so the same arguments would not hold for 

"homeomorphic" instead of "equal". 

CLAIM 1: For3`l < 3`2 E ~ we have that M ~ (3`1,3`2] i8 open in X .  

Proo~ Otherwise we would have 

(,) M ~ (3"~b 3̀ 2 < ~)(~x E I = ('~1,3`2] "" int((3`l, 3'2])). 

Pick ~/1,3`2,x E M satisfying the above sentence. We may say that x = "~ < ~. 

As I E M, x E I and X M  = t~, I is open in XM.  So there is a V E TM such that 

x E V M M C_ I. Therefore M ~ V is open, x E V and V C I. This contradicts 

(*) and we have the result. I 

CLAIM 2: M ~ (VV E T)(Va E X ) ( a  E V --+ (313 < a)((fl, a] C_ V)). 

Proof." Pick V E Tc l  M. V M M E TM. Using that X M : t~ topologically we 

may find ~ < a such that (/~, a] C_ V M M. As before, (13, a] E M and so we have 

that M ~ (~,a] C V. I 

Claim 1 and Claim 2 combined say that M ~ X is homeomorphic to an 

ordinal, and consequently H(0) ~ X is homeomorphic to an ordinal. All we 

need to prove now is that this ordinal is actually ~. 

Suppose not. Then X = A > ~. Since ~ c_ M and ~ E M, we would have 

X N M = A C~ M, which includes ~ + 1. This would contradict X A M = n. I 

We will now state and prove a version of the Theorem when we have "home- 

omorphic" instead of "equal". The "equal" version would follow from a positive 

"homeomorphic" version, but for the latter, we only have consistency results and 

even that not for all ordinals. As we do not have the topology on the space 

defined by an absolute order, E, the proof technique is rather different. 

First we need the following Lemmas; we give a hint of proof for those not yet 

published. 

LEMMA 1.2: Let ~ be a cardinal o f  cofinality >_ wl. Consider the topology 

induced by the order and let Y C_ n be such that with the subspace topology, Y 

is homeomorphic to n. Then Y is a closed subset o f  n. 
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Proof'. Fix h: Y > ~ a homeomorphism and notice tha t  since they are home- 

omorphic,  

(*) IYI = ~. 

Suppose that  Y is not closed. Pick a = min{8 : 0 E cl(Y) \ Y}. 

CLAIM: 

(**) h"(V n [0, is bounded in 

To see that ,  suppose otherwise. Then  C1 = h" (Yn[0 ,  a]) is a closed unbounded 

subset of t;. In this case C2 = h"(Y \ [ 0 ,  a]) is a closed subset of ~ which must be 

bounded as cof(~) >_ Wl, and for such ~ two closed unbounded sets must meet,  

but  C1 and C2 are obviously disjoint. 

So for some 3, (72 C [0, ~], which is compact ,  and consequently Y \ [ 0 ,  (~] C 

h- l ( [0 ,  3]) which is also compact .  So Y \ [0 ,  a] C_ [0, ~/] c_ ~, for some 7 < ~. 

Notice now tha t  this implies Y = (Y (~ [0, hi) U (Y \ [0 ,  hi) C_ [0, max(a,~/)],  

which implies IYI < ~, contradicting ( . ) .  | 

Now, let A = cof(a) .  Fix f :  A > a a cofinal mapping. 

By induction, we will construct  a strictly increasing sequence 

a--{a~:e<A}C_Y 

converging to a ~ Y with the following induction hypothesis: 

(1) Vfl < A, {a~:  e < 13} is strictly increasing. 

(2) If 3 < A is a limit ordinal, then a 3 = sup{a~ : e < 3}. 

Choose s0 E ( f (0) ,  a] f~ Y. If a~ is chosen, then 

(* * *) a~+l is chosen in (a~, a] A ( / (e  + 1), a] N Y. 

It  remains to choose a 3 for/~ < A a limit ordinal. Notice tha t  a/~ -- {a~ : e </~} 

is not  closed in ~. If it were closed, as it is bounded,  it would have an upper  

bound  in or/% and this would contradict  the fact tha t  it is strictly increasing. It  

has then  a limit point  and this limit point  has to be in Y by the minimali ty of 

a and since fl < cof(a) .  We choose a 3 to be this limit point. By ( ,  * . ) ,  a 

converges to a .  

Notice tha t  by the way we constructed it, a U {a} is closed in ~. So a is closed 

in Y. 

We have tha t  h't(cr) is closed in ~ and is bounded in n by (**). It is then a 

compact  subset of ~. As h is a homeomorphism,  cr is compact  in Y. As Y is 
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a subspace of n, it is compact in n. This is a contradiction since it includes a 

sequence converging to a point outside of it. I 

LEMMA 1.3 (see [1]): Suppose that M is an elementary submodel and X is a 

topologicM space such that (X, 7-) E M.  I f  X M  is compact then X is compact 

and XM is a perfect image of X. 

This and the following lemma are not hard to prove, using elementarity and 

the perfect map defined after the statement of Theorem 0.1. 

LEMMA 1.4 (see [8]): Suppose that M is an elementary submodel and X is a 

topological space such that (X, 7-) E M.  I f  XM is locally compact T2 then X is 

also. 

LEMMA 1.5 (see [5]): Suppose that M is an elementary submodel, X ,  Y E M 

and Y C M.  I f  iX I_< [Y] then X C_ M. 

This is straightforward, taking the function witnessing IX[ < [Y[ to be in M. 

Let X(x, X )  be the least cardinal of a neighborhood base at x. 

LEMMA 1.6: [2] I f  M is an elementary submodel, ~ C_ M,  and <X, T)  E M is a 

topological space such that for every x E X ,  X(x, X )  <_ n, then XM is a subspace 

of X .  

THEOREM 1.7: Let M be an elementary submodel, (X, 7-) a topological space 

and n a cardinal with cof(n) >_ Wl and such that ~, X ,  7- E M and also ~ C_ M.  

I f  XM is homeomorphic to n, then X = XM and hence is homeomorphic to ~. 

Proof: As X M i8 homeomorphic to n, it is locally compact T2. So by Lemma 1.4, 

X is locally compact T2 and we can use Theorem 0.1 to get a surjective perfect 

map ~r: Z C_ X > XM.  Fix f :  n > XM a homeomorphism and call x~ = f ( a ) .  

Then 

(Ca < ~)(3V~ E TCqM)(x~  E V~ • M  c_ f"([Xo,x~])). 

Notice that 

( .)  IV~ N M[ < ~. 

CLAIM 1: V ~ IVal < e~. 

Otherwise M ~ IV~I _> ~ which implies M ~ (3B C_ Va)([B I = ~). 

Pick s u c h a B  E M. Since ~ c M, by Lemma l.5 we get that B C_ M. So 

B _C V~ N M has size n, which contradicts (*). I 
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CLAIM 2: V ~ (Vx • X ) ( 3 V  • "f')(x • V and IVI < t~). 

It  is enough to prove that  M models the previous sentence. 

Suppose otherwise, that  

(**) M p (3x • x ) ( v v  • V-)fix • v)  -+ (IVI > .)). 

Pick such an x • X N M .  There is some (~ such that  x = x~ and so the 

previously defined V~ contradicts (**). | 

Now, V ~ Every point in X has a neighborhood of size < a. Since X is locally 

compact T2, we get that  each point in X has a neighborhood base of size < ~. 

Since ~ C_ M,  it follows that  XM ---- X N M has the subspace topology inherited 

from X (by Lemma 1.6). 

CLAIM 3: X n M is open in X .  

To see that ,  for x • X n M,  use Claim 2 and get V a neighborhood of x of size 

< ~. This V may be taken in M (as x • M) and so by Lemma 1.5 we have 

t h a t V _ C M .  Now, x • V C _ X N M .  | 

We will prove now that  IXI _< a. Suppose otherwise that  

* * *) V ~ [ X \ X N M  I > ~. 

We obtain V ~ (3 open Y C X ) ( Y  TM ~ and IX \ YI ~ ~). So 

V ~ (3 open Y C X ) ( Y  ~ ~ and (3T C_ X \ Y ) ( I T I  = t~). 

By elementarity 

M ~ (3 open Y C_ X ) ( Y ' ~  ~ and (ST C_ X \ Y)([T[ = a). 

P ickY,  T E M. Again, by Lemma 1.5, T C_ X N M  a n d Y  C_ X N M .  In 

particular Y is open in X N M. 

Remember  that  X N M = XM which is homeomorphic to n. So fix g: n - 

X N M a homeomorphism. 

C = g - l ( y )  is a subset of e; homeomorphic to ~. So it is closed in n by 

Lemma 1.2. As Y is open, C is also open in n. So D = n "- C is a closed subset 

of ~. Because two clubs in ~ always meet (as cof(~) > wl), D is a bounded set 

in ~ having then cardinality less than ~;. The contradiction comes from the fact 

that  g - l ( T )  C_ D and has size ~. So (* * *) is false which implies IXI = ~, and 

by Lemma 1.5, X c_ M, so X = X N M and hence is homeomorphic to ~. | 
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We do not know if our results can be extended to singular cardinals of countable 

cofinality, or to arbi t rary  ordinals of uncountable cofinality. 

The assumption tha t  ~ C_ M is a s t rong one; however the following two the- 

orems will show tha t  the condition tha t  the cardinal be included in the model  

cannot  be eliminated from the hypothesis of Theorem 1.7, at  least when g is not  

weakly inaccessible. 

THEOREM 1.8: Suppose that M is an elementary submodel, ~ is a cardinal and 

(X, 7-) is a topological space such that X ,  T ,  a, ~+ c M ande; C_ M but ~+ ~= M .  

I f  X M  is homeomorphic to ~+ then X is not homeomorphic to ~+. 

Proo~ We have two cases. If  for some x C X ,  X(x, X )  >_ ~+, then trivially X 

is not homeomorphic  to ~+. Suppose then tha t  for every x E X ,  X(X, X )  <_ a. 

Then by Lemma 1.6, X M  is a subspace of X.  

If  X is homeomorphic  to a +, fix f :  ~+ ) X = {x~ : c~ < a+} a homeomor-  

phism. We may pick f E M.  Notice tha t  Y = f - l ( X  N M )  is a subset of  ~+ 

homeomorphic  to ~+. By Lemma 1.2, Y is closed in ~+, which implies X M M is 

closed in X.  

As n + ~ M,  X is not a subset of M (again just  use tha t  f E M).  Pick now 

7 = min{a  : x~ ~ X N M } .  Since f C M,  we have tha t  9 ' i s  an infinite limit 

ordinal. Now ~r = {x~ : a < ~/} C_ X M M and x~ E cl(a) as 7 C cl({a : a < 7} 

and f is a homeomorphism.  Since X n M is closed in X,  x~ C X n M,  which 

contradicts  the definition of  7. | 

THEOREM 1.9: Suppose that M is an elementary submodel, ~ is a cardinal with 

wl < cof(~) = v < ~: and (X, 7" I is a topological space such that X ,  7-, ~ E M and 

7- C_ M but h', ~ M.  I f  X M  is homeolnorphic to ~ then X is not homeomorphic 

to t~. 

Proof: Again, we have two cases. Let w ( X )  be the least cardinal of a base for 

X.  If w(X)  < h: or w ( X )  > n then clearly X is not homeomorphic  to g. We may 

suppose then tha t  w ( X )  = ~. Pick B = {B E : ~ < g} E M a basis for X of size 

h:. Fix f :  7 ~ n a strictly increasing cofinal map  and define for x E X n M:  

V ~ < 7 - ,  C.~,~ = [ ~ { B ~ : / 3 <  f ( ~ )  a n d x C B g } .  

Notice tha t  as all parameters  are in M,  also Cx,~ E M.  Define 

P x  = : < 7-} 
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Notice that: 

(1) P~ E M. 

(2) P~ C_ M (since T _C M).  

(3) n P~ = {x}, since if y # x then there is B B such that  y ~t B E but x E B E- 

We are using that  X is T1; this is by elementarity, since X M  is T1 because 

is. Pick a E v such that  f ( a )  > ~ and notice that  y ~ C~,a. 

To finish the proof observe that,  defining Vz and 7r as in 0.1, 

So, as an injective perfect map, 7r is a homeomorphism, and the proof proceeds 

as in Theorem 1.8. I 

LEMMA 1.10: [5] IfO # does not exist and [M[ _> t~, then ~ C M.  

This is proved by considering the inverse i -1 of the Mostowski collapsing 

isomorphism i of M.  i - l i L ~  moves some a < t~ if M ~ ~. 

Theorem 1.7 together with the previous lemma leads to the result: 

COROLLARY 1.11: Suppose 0 # does not exist. Let M be an elementary sub- 

model, (X, 7-) a topological space and ~ a cardinal with cof(~) _> Wl such that 

t~, X ,  T E M .  Then i f  X M  is homeomorphic to ~, then X is homeomorphic to ~. 

The reader may obtain information about 0 # in [4]. It  is a special subset of w. 

Its existence has many consequences, among them the existence of large cardinals 

in inner models. Also, V = L --+ 0 # does not exist. 

Any definable ~ such as wl, w2, etc. is automatically in M.  Also, the condition 

that  t~ E M is sometimes a consequence of ~ C_ M. This holds, for instance, for 

all successor cardinals: 

PROPOSITION 1.12: Suppose that ~ -~ R~ and 13 < ~. I f  M is an elementary 

submodel and ~ C_ M then ~ E M .  

Proof: The proof is simple. We have that  ~ = R/~ and fl E M so R E is defined 

in M,  so ~ E M. I 

We now present some examples. Let o t (X)  be the order type of X. 

LEMMA 1.13: Let M be an elementary submodel and ~ E M a cardinal with the 

order topology T.  Then t~ M is homeomorphic to ot(~ M M).  

Proof: To see this, B -- {[a,/~], [a,/3): a < /3  < ~} is a basis for the topology of 

t~ that  lies in M. Therefore riM and •M = {B N M : B E B M M} generate the 

same topology on ~M. 
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Now [a,/3) E M if and only if a,/3 ~ M,  and similarly for [a,/3]. 

So if f :  o t ( n N M )  ---+ n N M  is strictly increasing and onto, it is a homeomor- 

phism between ot(n N M) and g U .  I 

Example 1.14: An elementary submodel M,  and a topological space (X, T)  c M 

such that  X is not homeomorphic to w but XM is homeomorphic to w. 

Just  pick X a discrete space of uncountable cardinality and M a countable 

elementary submodel such that  X E M. In this case XM is a countable discrete 

space and thus homeomorphic to w. I 

Notice that  in the above example, w C M, w C_ M but cof(w) = w < wl. 

If we are looking for an X such that  XM is homeomorphic to wl but X ~ XM, 

by Theorem 1.7 we need to find an M with wl ~ M. Such an M must have 

]wl M M] countable and yet be uncountable since XM is uncountable. We thus 

assume Chang's  Conjecture in the following form: 

There is an elementary submodel M such that IMI = ~1, Iwl N M I = ~o and 

n MI -- ~ .  

Example 1.15: Assuming Chang's Conjecture, there is an elementary submodel 

M,  and a topological space (X, T)  E M such that  X is not homeomorphic to wl 

but XM is homeomorphic to wl. 

Observe that  

(,) w2 = min{T E M :  I~- n MI = ~1}. 

To see this, pick T < W2 C M. Then there is S E M, a bijection between wl 

and ~-. Because f C M, we have that  IT M M I = Iwl M M]. 

CLAIM: The order type of w2 N M is wl. 

To see this suppose otherwise, that  there is a/3 > Wl and a g:/3 > w2 N M 

strictly increasing and onto. Now f(wl) < w2 would contradict (.).  

Let X = w2 with the order topology. By Lemma 1.13, XM is homeomorphic 

to wl. I 

Chang's  Conjecture has medium large cardinal strength - -  its consistency can 

be obtained from an wl-ErdSs cardinal a ,  i.e., a --+ (wl) <~ [7]. 
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2. The long line 

Isr. J. Math. 

THEOREM 2.1: I f  X M  is homeomorphic to the long line, then X = X M. 

Proof: XM is locally compact T2, so X is also by Lemma 1.4. It is easy to see 

that  X is connected since XM is. Since X is connected and Tychonoff, there is 

a continuous f mapping X onto [0, 1]. Hence there is a continuous g mapping 

XM onto [0, 1]M = [0, 1] M M by Lemma 1.6. But then [0, 1] M M is connected, it 

includes the rationals, so it is all of [0, 1]. 

We may therefore conclude by Lemma 1.5 that wl _C M. 

In [8] it is shown that wl c_ M implies hereditary Lindel5fness goes up from 

XM to X; the same proof will work for local hereditary Lindel5fness: 

LEMMA 2.2: If  W1 C_ M and X M is locally hereditarily LindelSf, so is X.  

Proot~ Suppose X is not locally hereditarily LindelSf. Then 

i ~ (3x E X)(VU E "]-)[x E U -+ (3f: Od 1 ) U)(3{Us}s<wl C T)(Voz < 5Ol) 

(f(a) • Us and (V/~ < a)(f(a) ¢ U~))]. 
Since wl C M, we have 

(Sx E X N M)(VU E T A  i ) [ x  • U M U -+ (3f  • U ) ( f :  ¢d I ~ U A M) 

(B{Us}s<~ C_ T n M ) ( V a  < wl ) ( f (a )  • UsMM and (Vfl < a)(f(a) q~ U~NM))], 

which implies XM is not locally hereditarily LindelSf. | 

It follows that 

LEMMA 2.3: X is first countable and hence XM is a subspace of X.  

Proo~ The second half follows from the first and Lemma 1.6; the first half 

follows from local compactness plus local hereditary Lindel5fness. I 

Now we can finish the proof of Theorem 2.1. 

Define by induction {Ks}a<wl : K0 is any compact neighborhood in X; for a 

limit, Ks  = U{K~}~<a; for a = /3  + 1, take a compact neighborhood Nx about 

each x in KZ and let Ks  = U{N~ : x  c Kf~}. 

Let K = Ua<~l Ks; K is open by construction and closed by first countability. 

Therefore K = X by connectedness. By induction, each Ks  - -  and hence X 

- -  has cardinality _< 2 s°, since compact first countable Hausdorff spaces have 

cardinality _< 2 a°, and the closure in a first countable Hausdorff space of a set 

of size <_ 2 ~° also has size < 2 ~°. But then X C_ M b y  Lemma 1.5. XM i s a  
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subspace of X,  so the topology of XM coincides with that  of X N M, i.e., X,  so 

we are done. 

We have used very little of the properties of the long line; what we have in fact 

proved is: 

THEOREM 2.4: I f  X M  is a connected, locally compact, locally hereditarily 

Lindel6f T2 space, then X -- XM.  

Theorem 2.4 should be compared with the following result, which is Theorem 

17 of [s]: 

THEOREM 2.5: f i X  M is a locally compact, hereditarily Linde16f uncountable T2 

space, then X = XM.  

"Connected" cannot be replaced by "locally connected" in Theorem 2.1: Let 

X be the disjoint sum of (2~°) + copies of N, and let M be a countably closed 

elementary submodel of size 2 ~°. Then X M  is the sum of 2 ~° copies of R. 

The local hereditary LindelSfness also cannot be omitted. Consider a "longer 

line", obtained by ordering X = (2~°) + x ~ lexicographically. Take a countably 

closed elementary submodel M of size 2 ~°. Then X M  is an initial segment of X 

and so is locally compact T2 and connected. 
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